

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра общей химии

ЛАБОРАТОРНЫЙ ЖУРНАЛ

ПО КУРСУ ХИМИИ

НА УЧЕБНЫЙ 20___/20___ ГОД

Студент		
	Фамилия Имя Отчество	
	Институт	
	•	
	Группа	
	- PJ	

Составители: Е.М. Мясоедов, Т.Г. Бельцова, А.А. Корытин

Под редакцией кандидата технических наук, доцента Ю.В. Устиновой

Химия : журнал лабораторных работ / Мин-во образования и науки Росс. Федерации, Моск. гос. строит. ун-т., каф. общей химии ; сост. Е.М. Мясоедов, Т.Г. Бельцова, А.А. Корытин / под ред. Ю.В. Устиновой ; Москва : МГСУ. — Сетевое электронное издание. — Систем. требования: 1,3 ГГц и выше ; RAM 256 Мб ; необх. на винчестере 985 Мб ; Windows XP SP2, 7, 8.

К выполнению лабораторных работ допускаются студенты, изучившие правила техники безопасности и расписавшиеся в регистрационном листе.

Темы лабораторных работ и номера выполняемых опытов определяются направлением и профилем подготовки студента и указываются преподавателем. Работы нумеруются в порядке их выполнения.

Результаты, полученные в процессе выполнения лабораторной работы, записываются в журнал в виде уравнений реакций. Также в журнал записываются наблюдения при выполнении опытов и выводы, обобщающие результаты проведенных экспериментов.

Пропущенные лабораторные работы независимо от причины должны быть выполнены студентом в присутствии преподавателя в согласованные сроки, но до начала зачетно—экзаменационной сессии.

Выполненная лабораторная работа подписывается преподавателем в день ее выполнения в графе «работа выполнена».

После полного и правильного оформления студентом лабораторной работы и контрольного тестирования по теме работы преподаватель расписывается в графе «работа защищена».

Для студентов 1 курса всех институтов МГСУ. В журнале представлены лабораторные работы по курсу химии

УДК 691:54(076.5) ББК 38.300.64я73

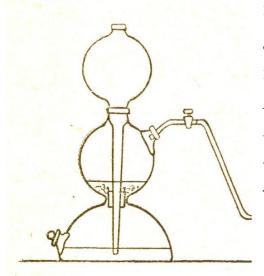
Издание публикуется в авторской редакции

Объем информации [1,88 Мб] Систем. требования: 1,3 ГГц и выше; RAM 256 Мб; необх. на винчестере 985 Мб; Windows XP SP2, 7, 8. Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный строительный университет». Издательство МИСИ — МГСУ. Тел. (495) 287-49-14, вн. 13-71, (499) 188-29-75, (499) 183-97-95, e-mail: ric@mgsu.ru, rio@mgsu.ru

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Опыт 1. Получение нерастворимого в воде основания.

В пробирку налейте раствор сульфата магния МgSO ₄ объёмом 2-3 мл (при-
мерно 2–3 см по высоте пробирки), затем прилейте раствор гидроксида натрия
NaOH равного объёма.
Отметьте цвет осадка () и напишите уравнение реак-
ции образования нерастворимого в воде гидроксида магния.
$MgSO_4 + NaOH \rightarrow \underline{\hspace{1cm}}$
Содержимое пробирки энергично встряхните и примерно половину его от-
лейте в другую чистую пробирку. Затем к одной части прибавьте раствор щёлочи
NaOH приблизительно равного объёма, а к другой – хлороводородную (соляную)
кислоту HCl объёмом 2–3 мл.
Отметьте свои наблюдения и напишите уравнения протекающих реакций:
()
$Mg(OH)_2 + NaOH \rightarrow$
$Mg(OH)_2 + HCl \rightarrow$
Вывод


Опыт 2. Получение амфотерного гидроксида и исследование его свойств.

В пробирку налейте раствор сульфата хрома (III) $\mathbf{Cr_2(SO_4)_3}$. объёмом 2–3 мл. Затем к раствору соли прилейте чуть-чуть раствора гидроксида натрия **NaOH**. Если образующийся осадок сразу растворится, добавьте в пробирку ещё немного раствора соли.

Отметьте цвет осадка () и напишите уравнение ре
акции образования нерастворимого амфотерного гидроксида.
$Cr_2(SO_4)_3 + NaOH \rightarrow $
Содержимое пробирки энергично встряхните и примерно половину его пере
несите в другую чистую пробирку. Затем к одной части добавьте раствор щёлочи
NaOH , а к другой – хлороводородную (соляную) кислоту HCl до растворения
осадков.
Отметьте свои наблюдения и напишите уравнения протекающих реакций
()
$Cr(OH)_3 + NaOH \rightarrow $
$Cr(OH)_3 + HCl \rightarrow \underline{\hspace{1cm}}$
Вывод

Опыт 3. Получение кислой соли.

В пробирку налейте раствор гидроксида кальция **Ca(OH)**₂ объёмом 4–5 мл и пропускайте через этот раствор углекислый газ из аппарата Киппа до полного исчезновения появляющегося первоначально помутнения раствора (из–за образую-

Аппарат Киппа

щегося нерастворимого карбоната кальция и его дальнейшего превращения в растворимый гидрокарбонат кальция).

Аппарат Киппа — лабораторный прибор для получения газообразных веществ. Для получения углекислого газа в него помещают известняк (основным компонентом которого является карбонат кальция) и соляную кислоту.

$$CaCO_3 + HCl \rightarrow CaCl_2 + H_2CO_3$$

 $H_2CO_3 \rightarrow CO_2 \uparrow + H_2O$

Напишите уравнения протекающих реакций.

$$Ca(OH)_2 + CO_2 \rightarrow$$

$$CaCO_3 + H_2O + CO_2 \rightarrow \underline{\qquad}$$

$$(H_2CO_3)$$

	Ответьте на дополнительные	вопросы к опып	<u>ny.</u>
	I. Какие кислоты образуют кисль	_	
	II. Напишите уравнения реакці	ий получения	1) гидрофосфата кальци.
CaF	$m{HPO_4}$ и 2) дигидрофосфата кальция	$Ca(H_2PO_4)_2$ –	
	а) исходя из гидроксида кальция (Ca(OH) ₂ u opmo	фосфорной кислоты Н ₃ РО ₄
1)	+	<i>→</i>	+
2)	+	<i>→</i>	+
	б) исходя из фосфата кальция С	a ₃ (PO ₄) ₂ u opmo	ϕ ос ϕ орной кислоты $ m H_3PO_4$
1)	+_	<i></i>	+
2)	+	<i></i>	+
	III. Составьте структурные фор	омулы кислых со	олей:
	гидрофосфат кальция	диг	гидрофосфат кальция

\sim	4	TT		U	
()пыт	4.	ПОЛ	учение	основной	соли.
O II DI I	T •	TIOLI	, icitic	OCHODHOH	COLLE

В две пробирки налейте раствор сульфата меди (II) CuSO ₄ объёмом по 3-4
мл. В первую пробирку прилейте по стенке 1-2 капли (не более) раствора гидрок-
сида натрия NaOH и содержимое пробирки энергично встряхните.
Напишите уравнение происходящей реакции образования основной соли и
отметьте цвет осадка ().
$CuSO_4 + NaOH \rightarrow $
Во вторую пробирку прилейте раствор гидроксида натрия примерно равного
объёма, энергично встряхните и запишите уравнение происходящей реакции обра-
зования основания. Отметьте цвет осадка ().
$CuSO_4 + NaOH \rightarrow $
Пробирки с полученными осадками нагрейте на водяной бане. Напишите
уравнение происходящей реакции и отметьте изменения при нагревании
().
→
Ответьте на дополнительные вопросы к опыту.
I. Какие основания образуют основные соли?
II. Напишите уравнения реакций получения 1) хлорида гидроксожелеза (III) и
2) хлорида дигидроксожелеза (III) —
а) исходя из гидроксида железа (III) $\mathbf{Fe}(\mathbf{OH})_3$ и соляной кислоты \mathbf{HCl} :
<i>1)</i> +++++
2)+++
<u> </u>

→	+
<i>></i>	+
	солей. дигидроксожелеза (П
	→ глы основных с

	Фамилия И.О.	Подпись	Дата	Подпись
	студента	студента	дата	преподавателя
Работа выполнена				
Работа защищена				

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ СКОРОСТИ ХИМИЧЕСКОЙ РЕАКЦИИ ОТ КОНЦЕНТРАЦИЙ ВЗАИМОДЕЙСТВУЮЩИХ ВЕЩЕСТВ. ИЗУЧЕНИЕ СМЕЩЕНИЯ ПОЛОЖЕНИЯ ХИМИЧЕСКОГО РАВНОВЕСИЯ

Опыт 1. Исследование зависимости скорости реакции от концентрации одного из взаимодействующих веществ.

Для точного отмеривания объёмов жидкостей (с использованием градуированных бюреток) надо сначала отметить начальный уровень раствора в бюретке с точностью до 0,1 мл, затем отлить в пробирку раствор до установления уровня, превышающего начальный на необходимый объём.

Реакция выражается уравнением:

$$Na_2S_2O_3 + H_2SO_4 \rightarrow S\downarrow + Na_2SO_4 + SO_2\uparrow + H_2O$$

Образующаяся свободная тонкодисперсная сера, нерастворимая в воде, появляется не сразу, а спустя несколько минут в зависимости от концентрации реагентов и температуры растворов. Выделение серы проявляется сначала в виде едва заметного помутнения, которое затем постепенно усиливается.

Цель опыта — определить время (τ), прошедшее от момента смешивания растворов до момента появления едва заметного помутнения, по которому можно судить о скорости реакции $v = a \cdot \tau^{-1}$

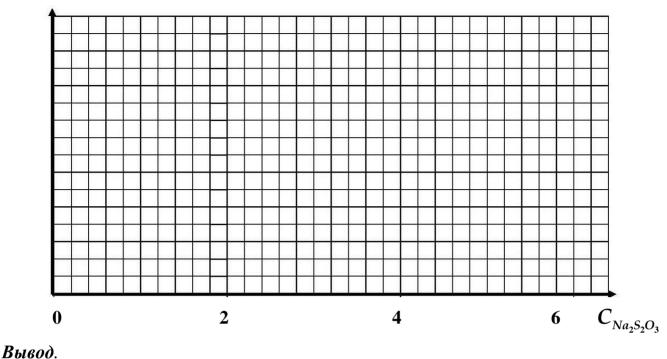
В три пробирки налейте из бюреток раствор тиосульфата натрия и дистиллированную воду в соответствии с данными, указанными в таблице с точностью до $\pm 0,1$ мл. Это позволяет получить растворы $\mathbf{Na_2S_2O_3}$ с различными концентрациями.

Затем в три чистые пробирки налейте из бюретки раствор серной кислоты объёмом по 2,0 мл в каждую.

Добавьте содержимое одной из пробирок с кислотой в первый из растворов с тиосульфатом натрия, после чего сразу же встряхните смесь и отметьте время в момент смешивания растворов (с точностью до секунды). Проделайте то же со вторым и третьим растворами тиосульфата натрия. Время в момент смешивания

растворов запишите в таблицу.

Наблюдайте за растворами в пробирках, отметьте время в момент появления едва заметного помутнения раствора в каждой из них (с точностью до секунды). Рассчитайте время, условную и относительную скорость реакции в каждом из случаев.


$N_{\underline{0}}$	Объём	Объём	Объём	Время в	Время в	Время	Условная	Относительная
п.п	раствора	воды	раст-	момент	момент	реакции	скорость	скорость
	$Na_2S_2O_3$		вора	смеши-	появле-		реакции	реакции
			H_2SO_4	вания	ния	τ	1	$v_y = v_y$
				раство-	помутне-		$v_y = - \tau$	U ₀₁₁₁₁ —
				ров	ния			$v_{y\mathrm{(min)}}$
	МЛ	МЛ	МЛ			c	c^{-1}	
1	2.0	4.0	2.0					
1	2,0 +	4,0	2,0					
2	4,0 +	2,0	2,0					
	9 -	, -	, -					
								_
3	6,0	+ 0	2,0					

 $(v_{y\,\mathrm{(min)}}-$ наименьшее из полученных значений условной скорости)

Напишите уравнение за	акона действующих масс для данной реакции –
а) в общем виде:	$v = \underline{\hspace{1cm}}$
б) для конкретных усло	овий опыта (постоянство концентрации H_2SO_4):
	7) =

По результатам опыта постройте график зависимости относительной скорости реакции от концентрации тиосульфата натрия. Для этого на абсциссе отложите число миллилитров раствора тиосульфата натрия, характеризуя этим его концентрацию (уже сделано), на ординате — величину относительной скорости в выбранном Вами масштабе.

 v_{omh}

Опыт 3. Исследование подвижности положения химического равновесия при изменении концентрации вещества.

В пробирке смешайте из капельниц растворы хлорида железа (III) **FeCl₃** и роданида калия **KSCN** (по 2–3 капли каждого раствора). К полученному окрашенному раствору прилейте дистиллированной воды примерно на три четверти объёма пробирки и тщательно перемешайте.

В системе устанавливается равновесие, соответствующее уравнению:

$$FeCl_3 + 3KSCN \Leftrightarrow Fe(SCN)_3 + 3KCl$$

Одним из продуктов указанной обратимой реакции является роданид железа (III) $\mathbf{Fe}(\mathbf{SCN})_3$ кроваво–красного цвета.

Содержимое пробирки разделите приблизительно поровну на четыре части. К первой добавьте 2-3 капли раствора $\mathbf{FeCl_3}$, ко второй -2-3 капли раствора \mathbf{KSCN} , к третьей – немного кристаллического хлорида калия \mathbf{KCl} и встряхните для растворения. Сравните изменения в окраске содержимого каждой пробирки с окраской раствора в оставшейся пробирке. Запишите свои наблюдения в таблицу.

№ про- бирки	Добавляемое вещество	Наблюдения	Направление смещения по- ложения рав- новесия	Изменения концентраций веществ в системе (увеличение – ↑, уменьшение – ↓)
1	FeCl ₃			KSCN – Fe(SCN) ₃ – KCl –
2	KSCN			FeCl ₃ – Fe(SCN) ₃ – KCl –
3	KCl			FeCl ₃ – KSCN – Fe(SCN) ₃ –

Запишите математическое выражение константы равновесия данной реакции.

\mathbf{V} –	
	•
p	

Вывод	 		

	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена				
Работа защищена				

ИССЛЕДОВАНИЕ ПРОЦЕССОВ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

Опыт 1. Наблюдение окраски индикаторов в различных средах.

В три пробирки налейте дистиллированную воду (примерно по 1/4 объёма) и добавьте в каждую по 2–3 капли раствора фенолфталеина. Затем в первую пробирку прилейте немного хлороводородной кислоты **HCl**, а во вторую – немного раствора щёлочи **NaOH**. Отметьте цвет индикатора в каждой из трёх пробирок и запишите результаты наблюдений в таблицу. Проделайте аналогичные испытания для метилоранжа и универсального индикатора.

Запишите уравнения диссоциации электролитов:

$H_2O \Leftrightarrow$	
NaOH ⇔	
HCl ⇔	

По таблице цветов универсального индикатора определите величину водородного показателя **рН** в разных средах и запишите результаты в таблицу.

		Цвет индикатора					
Среда	лакмус	фенолфталеин	метилоранж	универсаль- ный индикатор	Водородный показатель рН		
Нейтральная [H ⁺] = [OH ⁻]	Фиоле- товый			-			
Кислая [H ⁺] > [OH ⁻]	Розовый						
Щелочная [H ⁺] < [OH ⁻]	Синий						

Опыт 2. Исследование подвижности положения химического равновесия при диссоциации слабого электролита.

	В пр	обирку	налейте	раствор гидр	оксида аммония	NH₄OH объёмо	ом 2–3 мл и
добав	ьте	2–3	капли	раствора	фенолфталеина.	Полученный	раствор
			ЦВ	ета перемен	пайте и примерно	половину его	отлейте в

другую пробирку.

В одну из пробирок прибавьте немного сухого хлорида аммония и встряхните до полного растворения. Сравните окраску содержимого пробирок.

Напишите уравнения диссоциации гидроксида аммония и хлорида аммония.

NH₄OH ⇔
$NH_4Cl \rightarrow$
Объясните смещение положения химического равновесия диссоциации гид
роксида аммония при добавлении хлорида аммония.
Напишите выражение константы диссоциации гидроксида аммония.
$K_{_{\mathcal{I}}} =$
Вывод
Опыт 3. Исследование направления реакций в растворах электролитов.
а) В одной пробирке смешайте растворы нитрата свинца (II) $\mathbf{Pb}(\mathbf{NO_3})_2$ и хро
мата калия K₂CrO₄ объёмом по 2–3 мл. Напишите уравнение происходящей реак
ции в трёх формах и отметьте цвет осадка ().
Молекулярное уравнение:
$Pb(NO_3)_2 + K_2CrO_4 \rightarrow \underline{\hspace{1cm}}$
Полное ионное уравнение:

Краткое ионное уравнение:

б) В другую пробирку налейте раствор сульфата алюминия $Al_2(SO_4)_3$ объё-
мом 3-4 мл и добавьте к нему немного раствора гидроксида натрия NaOH до обра-
зования осадка (если образовавшийся осадок сразу растворится, то добавьте не-
много раствора сульфата алюминия). Укажите цвет осадка ().
Запишите уравнение реакции образования амфотерного гидроксида алюми-
ния.
$Al_2(SO_4)_3 + NaOH \rightarrow $
Напишите уравнения диссоциации молекул амфотерного гидроксида алюми-
ния $Al(OH)_3 = H_3AlO_3$ по основному и кислотному механизмам:
$Al(OH)_3 \longleftrightarrow \dots$
$H_3AlO_3 \longleftrightarrow \dots$
Перемешайте, встряхивая, содержимое пробирки и перенесите примерно по-
ловину его в другую пробирку. В первую добавьте раствор НСІ, во вторую – рас-
твор NaOH до растворения осадков.
Напишите уравнения реакций взаимодействия амфотерного гидроксида алю-
миния с кислотой и щёлочью в трёх формах:
молекулярное уравнение реакции
$Al(OH)_3 + HCl \rightarrow $
полное ионное уравнение
$\underline{\hspace{1cm}} \rightarrow \underline{\hspace{1cm}}$
краткое ионное уравнение
$\underline{\hspace{1cm}} \rightarrow \underline{\hspace{1cm}}$
молекулярное уравнение реакции
$H_3AlO_3 + _NaOH \rightarrow _$
полное ионное уравнение
краткое ионное уравнение

_	влении протекания реакций	
и о диссоциации амфотерных	электролитов в кислой и що	елочной средах.
Вывод		·
Ответьте на дополни	тельные вопросы к этой р	аботе.
	сислот, оснований и солей	
литической диссоциации. При		
щихся сильными и слабыми эл		
Кислоты	_	
Сильные		
Основания		
Сильные		
Все растворимые соли – силь	чые электролиты	
2. В структурных форм	лулах NaOH , H ₂ SO ₄ и N ₂	а Н СО ₃ укажите цифрами
связи, по которым электролі	<i>итическая диссоциация про</i>	оходит полностью (1), ча-
стично (2), отсутствует (3).		
NaOH	H_2SO_4	NaHCO ₃

3. C _I	равните в вис	де отношения	і коні	<i>центрации</i>	(моль/л) ионов	водорода в вод-
ных раств	opax HCl u C	CH ₃ COOH np	и усл	овии, что л	молярная конце	нтрация и тем-
пература	растворов	одинаковы,	но	степень	диссоциации	хлороводорода
составляет	т 92% , а укс	усной кислот	ы – 1,	<i>4%</i> .		
4. Pa	ассчитайте м	иолярную конц	<i>центр</i>	————— рацию (мол	ь/л):	
<i>a)</i> 1	НСІ в раство	pe c pH 3				
б) Na	аОН в раство	ppe c pH 12				

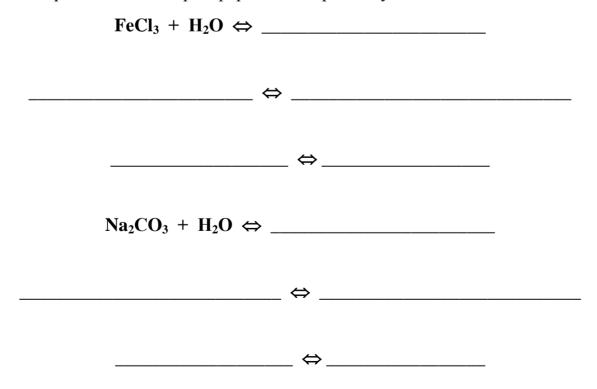
	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена				
Работа защищена				

Лабораторная работа № ___ ИССЛЕДОВАНИЕ ГИДРОЛИЗА СОЛЕЙ

Опыт 1. Изучение подвижности по	оложения хи	імического ј	равновесия	гидроли-
за соли при изменении температур	ы.			

На	алейте в	пробирку ра	аствор ацетата натр	оия NaCH ₃ C	ОО на 1/4	объёма и до-
бавьте	каплю	раствора	фенолфталеина.	Отметьте	окраску	индикатора
(). Ha	апишите уравнени	е гидролиза	ацетата на	атрия в трёх
формах:						
		NaCH ₃ CO	OO + H ₂ O ⇔			_
			⇔			
			⇔_			
Почему' раствора	? Охлади а? Как вл исходит	ите пробирк ияет измене	а водяной бане. Ка су водопроводной ение температуры н о гидролиза при на	водой. Что а положение	происходите равновеси	г с окраской я гидролиза?
Опыт 2	Исспец	поранио гил	попиза супьфата з	эпоминия		

Опыт 2. Исследование гидролиза сульфата алюминия.


В пробирку налейте раствор сульфата алюминия $Al_2(SO_4)_3$ примерно на 1/4 объёма. Затем в пробирку с раствором соли добавьте три капли индикатора метилоранжа. Отметьте окраску индикатора и укажите характер среды в растворе.

Напишите уравнение гидролиза соли по первой ступени в трёх формах. Сделайте вывод.

	$Al_2(SO_4)_3 + H_2O \Leftrightarrow$	
Rugad		

Опыт 3. Исследование взаимного усиления гидролиза солей.

В одну пробирку налейте раствор хлорида железа (III) $\mathbf{FeCl_3}$ (на 1/4 объёма), в другую — раствор карбоната натрия $\mathbf{Na_2CO_3}$ примерно равного объёма. Напишите уравнения гидролиза солей в трёх формах по первой ступени.

Перелейте содержимое одной пробирки в другую. После смешивания раство-

ров солей ионы Н	(из раствора) реагируют с ионами ОН (из раствора
), образуя	слабый электролит вод	y: $H^+ + OH^- \rightarrow H_2O$.
Концентрации	и ионов – продуктов ги	дролиза уменьшаются, и равновесие гид-
ролиза смещается в	право – гидролиз усил	пивается, становятся заметными последу-
ющие стадии гидро.	пиза:	
	FeOHCl₂ + H₂O ⇔	
		. ⇔
		_ ⇔
]	$Fe(OH)_2Cl + H_2O \Leftrightarrow$	
		⇔
		_ ⇔
Заметьте:	Fe(OH) _{3 (pacтвор)}	⇔ Fe(OH) _{3 (тв.фаза)} ↓
	NaHCO ₃ + H ₂ O ⇔	
	←	>
		_ ⇔
Заметьте: Н2С	$CO_3 \Leftrightarrow H_2O + CO_2$	$CO_{2 (pаствор)} \rightarrow CO_{2 (ra3)} \uparrow$
Запишите на	блюдения	

и составьте суммарное уравнение произошедшего в опыте.

	FeCl ₃ +	$Na_2CO_3 +$	$H_2O \rightarrow$	
Вывод.				

	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена				
Работа защищена				

ИССЛЕДОВАНИЕ ДИСПЕРСНЫХ СИСТЕМ. ИССЛЕДОВАНИЕ СВОЙСТВ КОЛЛОИДНЫХ РАСТВОРОВ

Опыт 1. Получение суспензии мела в воде.

Налейте в пробирку дистиллированную воду (на 1/4 объёма) и прибавьте в неё немного порошка мела. Пробирку несколько раз энергично встряхните для равномерного распределения частиц мела по всему объёму жидкости. Поставьте пробирку в штатив и наблюдайте за изменениями в полученной суспензии.

	Какие	системы	называют	суспензиям	и? Что	является в	даннои	суспензии
дист	персионн	ной средо	й, а что –	дисперсной	фазой?	От чего зав	висит уст	ойчивостн
сусп	ензии? З	Запишите	ответы на	вопросы и в	ывод.			
Выв	од							

Опыт 2. Исследование зависимости скорости коагуляции золя гидроксида железа (III) от величины заряда иона-коагулянта.

Коллоидный раствор (золь) гидроксида железа (III) **Fe(OH)**₃ уже получен полным гидролизом хлорида железа (III) — **FeCl**₃ в кипящей воде. При кипячении образующийся хлороводород удаляется из системы с парами воды, благодаря чему положение равновесия смещается вправо, гидролиз усиливается и идёт до конца:

FeCl₃ + 3H₂O ⇔ Fe(OH)₃ + 3HCl↑

Учитывая, что стабилизатором является хлорид железа (III), составьте формулу мицеллы предварительно полученного золя гидроксида железа (III).

Формула мицеллы золя гидроксида железа (III):

Какой по знаку заряд имеют гранулы исследуемого золя? Какие ионы будут вызывать разрушение золя, его коагуляцию – положительные или отрицательные?

Налейте в три пробирки предварительно полученный золь гидроксида железа (III) примерно на 1/4 объёма в каждую.

В первую пробирку из капельницы добавьте 3 – 4 капли раствора NaC1,

$$NaCl \rightarrow Cl^- + Na^+$$

во вторую 3-4 капли раствора Na_2SO_4 ,

$$Na_2SO_4 \rightarrow SO_4^{2-} + 2Na^+,$$

а в третью добавьте 3-4 капли раствора Na_3PO_4

$$Na_3PO_4 \rightarrow PO_4^{3-} + 3Na^+$$

Наблюдайте за происходящими в пробирках явлениями в течение нескольких минут. Какой из электролитов быстрее всего вызывает коагуляцию и чем это можно объяснить?

Вывод:			

Опыт 3. Получение гидрогеля кремниевой кислоты.

Налейте в пробирку специально приготовленный раствор силиката натрия примерно на 1/4 объёма, затем прибавьте разбавленную хлороводородную (соляную) кислоту (1–2 мл) и энергично перемешайте.

Напишите уравнение реакции в трёх формах и формулу мицеллы образующегося геля, учитывая избыток силиката натрия.

$Na_2SiO_{3 (H36)} + HCl \Leftrightarrow+$
Формула мицеллы геля кремниевой кислоты:

Объясните схему процесса гелеобразования за счёт образования межмолекулярных и молекулярных связей. Какой по знаку заряд имеют гранулы коллоидных частиц полученного геля?

Вывод._____

	Фамилия И.О.	Подпись	Дата	Подпись
	студента	студента	дата	преподавателя
Работа выполнена				
Работа защищена				

АНАЛИТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЖЁСТКОСТИ ВОДОПРОВОДНОЙ ВОДЫ. РЕАГЕНТНОЕ УМЯГЧЕНИЕ ОБРАЗЦОВ ВОДЫ

Опыт 1. Определение карбонатной (временной) жёсткости водопроводной воды титрованием хлороводородной (соляной) кислотой.

Титрование — постепенное добавление (по каплям) раствора реагента контролируемого объёма к анализируемому раствору заданного объёма.

Отмерьте мерным цилиндром (стаканом) порцию водопроводной воды объёмом 100 мл, перелейте её в чистую коническую колбу, добавьте 3 – 4 капли индикатора (метилоранж). Запишите начальный уровень соляной кислоты в бюретке (цена деления – 0,1 мл) и титруйте воду в колбе до точки эквивалентности, т.е. до момента изменения лимонно—жёлтой окраски раствора в оранжевую. При добавлении избытка кислоты окраска раствора станет розовой. В таком случае опыт следует переделать.

Запишите уровень соляной кислоты в бюретке после окончания титрования. По разности уровней определите объём соляной кислоты, израсходованной при титровании.

Вычислите величину карбонатной жёсткости (мэкв/л) воды по формуле:

$$\mathcal{K}_{K} = \frac{\mathbf{V}_{HCl} \cdot \mathbf{C}_{HCl}}{\mathbf{V}_{H_{2}O}} \cdot \mathbf{10}^{3},$$

где W_K – карбонатная (временная) жёсткость воды (мэкв/л),

 $V_{HCl}\,-\,$ объём раствора HCl, израсходованного для титрования (мл),

 C_{HCl} – концентрация HCl в растворе (0,1 экв/л),

 ${
m V_{H,O}}-{
m o}$ бъём водопроводной воды, взятой для титрования (мл).

Повторите титрование три раза, запишите полученные результаты в табли-

цу.

		Уровень	Уровень		
No	$\mathbf{V}_{\mathbf{H}_2\mathbf{O}}$	раствора HCl до	раствора HCl по	$\mathbf{V}_{ ext{HCl}}$	\mathbf{W}_{K}^{i}
пробы	МЛ	начала тит-	окончании	МЛ	мэкв/л
		рования	титрования		
1	100				
2	100				
3	100				

Напишите уравнение реакции при титровании в трёх формах.

$$Me(HCO_3)_2 + 2HCl \rightarrow MeCl_2 + 2CO_2\uparrow + 2H_2O$$

$$(Me - Ca, Mg, Fe, Mn)$$

$$\rightarrow$$

Рассчитайте среднее значение карбонатной жёсткости воды по результатам опыта:

$$\mathbf{\mathcal{K}}_{\mathbf{K}} = \frac{\mathbf{\mathcal{K}}_{\mathbf{K}}^{(1)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(2)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(3)}}{3} = \underline{\phantom{\mathbf{\mathcal{K}}_{\mathbf{K}}^{(1)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(2)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(3)}}} = \underline{\phantom{\mathbf{\mathcal{K}}_{\mathbf{K}}^{(1)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(2)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(3)}}} = \underline{\phantom{\mathbf{\mathcal{K}}_{\mathbf{K}}^{(1)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(2)} + \mathbf{\mathcal{K}}_{\mathbf{K}}^{(3)}}}$$

Вывод._____

Опыт 2. Определение общей жёсткости водопроводной воды трилонометрическим методом.

Метод основан на использовании реактива, название которого трилон—Б (это органический комплексообразователь — динатриевая соль этилендиамин-тетрауксусной кислоты — образует прочные комплексные соединения с ионами жёсткости):

$$\begin{array}{c|c} & & CH_2COONa \\ H_2C & & CH_2COOH \\ H_2C & & CH_2COOH \\ & & CH_2COONa \end{array}$$

Отмерьте в коническую колбу исследуемую водопроводную воду объёмом 50 мл, добавьте дистиллированную воду равного объёма, туда же из бюретки прилейте раствор буферной смеси объёмом 5,0 мл. Прибавьте чуть-чуть порошкообразного индикатора (хромоген чёрный) и круговыми движениями перемешайте содержимое колбы до растворения индикатора и появления светлофиолетовой окраски раствора. Запишите начальный уровень раствора трилона—Б в бюретке с точностью до 0,1 мл. Медленно по каплям титруйте воду в колбе при постоянном перемешивании до момента изменения окраски раствора в синеголубую. Запишите уровень раствора трилона в бюретке после титрования. По разности определите объём раствора, израсходованного для титрования.

Вычислите величину общей жёсткости (мэкв/л) воды по формуле:

$$\mathcal{H}_{O} = \frac{\mathbf{V}_{\mathbf{T}} \cdot \mathbf{C}_{\mathbf{T}}}{\mathbf{V}_{\mathbf{H},O}} \cdot \mathbf{10}^{3},$$

где $\mbox{ }\mbox{ }\mbox{$

 $V_{T}\,-\,$ объём раствора трилона, израсходованного для титрования (мл),

 $C_{\rm T}$ – концентрация трилона в растворе (0,02 экв/л),

 $V_{_{\! {
m H},O}}$ – объём водопроводной воды, взятой для титрования (мл).

Повторите титрование три раза, запишите полученные результаты в таблицу.

	$\mathbf{V}_{\mathbf{H}_2\mathbf{O}}$	Уровень	Уровень	$\mathbf{V}_{_{\mathbf{T}}}$	\mathcal{K}_{o}^{i}
$\mathcal{N}_{\underline{0}}$		раствора	раствора		U
пробы		трилона до начала тит-	трилона по окончании		
	МЛ	рования	титрования	МЛ	мэкв/л
1	50				
2	50				
3	50				

Рассчитайте среднее значение общей жёсткости воды по результатам опыта.

$$\mathbf{W}_{\mathbf{0}} = \frac{\mathbf{W}_{\mathbf{0}}^{(1)} + \mathbf{W}_{\mathbf{0}}^{(2)} + \mathbf{W}_{\mathbf{0}}^{(3)}}{3} = \underline{\qquad \qquad} = \underline{\qquad \qquad}$$
мэкв/л.

Соответственно, некарбонатная (постоянная) жёсткость воды:

$$\mathbf{W}_{H} = \mathbf{W}_{O} - \mathbf{W}_{K} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$$
 мэкв/л

Напишите уравнение реакции взаимодействия трилона—Б с катионом жёсткости Me^{2+} (Me-Ca, Mg, Fe, Mn).

Вывод._____

Опыт 3. Некоторые реагентные (химические) методы умягчения воды.

Налейте в пробирку водный раствор сульфата магния объёмом около 2 мл, добавьте раствор $Ca(OH)_2$ равного объёма. Что происходит? Напишите уравнение реакции в трёх формах.

$$MgSO_4 + Ca(OH)_2 \rightarrow \underline{\hspace{2cm}}$$

$$\rightarrow \underline{\hspace{2cm}}$$

Изменится ли (и как) общая жёсткость воды с учётом диссоциации Са(ОН)₂? –

- а) при недостатке Са(ОН)₂_____
- б) при эквивалентном количестве Са(ОН)2_____
- в) при избытке Са(ОН)₂ _____

Профильтруйте содержимое пробирки и к фильтрату добавьте раствор карбоната натрия. Что происходит?

Напишите уравнение реакции в трёх формах.

$CaSO_4 + Na_2CO_3 \rightarrow \underline{\hspace{1cm}}$	
→	
→	
При избытке $Ca(OH)_2$ также происходит реакция: $ Ca(OH)_2 \ + \ Na_2CO_3 \ \rightarrow \ ___$	_
→	
→	
Вывод	

	Фамилия И.О.	Подпись	Дата	Подпись
	студента	студента	дата	преподавателя
Работа выполнена				
Работа защищена				

ИССЛЕДОВАНИЕ РЕАКЦИЙ ОКИСЛЕНИЯ-ВОССТАНОВЛЕНИЯ

Опыт 1. Окислительные свойства перманганата калия в различных средах.

Налейте в три пробирки раствор перманганата калия объёмом по 1–2 мл в каждую. Затем в первую добавьте раствор серной кислоты (2–3 мл), во вторую – ничего, а в третью – раствор гидроксида натрия объёмом примерно 2–3 мл.

Во все три пробирки прилейте раствор сульфита натрия до появления видимых изменений в окраске растворов. Отметьте эти изменения. Расставьте коэффициенты в уравнениях происходящих реакций методами электронного и/или электронно-ионного баланса, укажите окислитель $(o\kappa-nb)$, восстановитель (e-nb), процессы окисления $(o\kappa-nue)$ и восстановления (e-nue).

В кислой среде Наблюдения Метод электронного баланса $KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + Na_2SO_4 + K_2SO_4 + H_2O_4$ Метод электронно-ионного баланса $KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + Na_2SO_4 + K_2SO_4 + H_2O_4$ Ионно-молекулярное уравнение

В нейтральной среде Наблюдения_____

Метод электронного баланса

 $_KMnO_4 + _Na_2SO_3 + _H_2O \rightarrow _MnO_2 + _Na_2SO_4 + _KOH$

Метод электронно-ионного баланса

 $_KMnO_4 + _Na_2SO_3 + _H_2O \rightarrow _MnO_2 + _Na_2SO_4 + _KOH$

Ионно-молекулярное уравнение

В щелочной среде Наблюдения

Метод электронного баланса

 $_KMnO_4 + _Na_2SO_3 + _NaOH \rightarrow _Na_2MnO_4 + _K_2SO_4 + _H_2O$

Метод электронно-ионного баланса

 $\underline{KMnO_4} + \underline{Na_2SO_3} + \underline{NaOH} \rightarrow \underline{Na_2MnO_4} + \underline{K_2SO_4} + \underline{H_2O}$

Метод электронного баланса

Метод электронно-ионного баланса

__Na₂MnO₄ + __H₂O \rightarrow __NaMnO₄ + __MnO₂ +__NaOH Ионно–молекулярное уравнение

Вывод._____

Опыт 2. Окисление гидроксида железа (II) на воздухе.

Прилейте к раствору сульфата железа (II) объёмом 2–3 мл раствор гидроксида натрия равного объёма. Отметьте цвет образующегося осадка, напишите уравнение реакции.

$$FeSO_4 + _NaOH \rightarrow __$$

Полученный осадок отфильтруйте на бумажном фильтре и наблюдайте изменение цвета осадка на фильтре вследствие окисления влажного гидроксида железа (II) кислородом воздуха в гидроксид железа (III).

Расставьте коэффициенты в уравнении происходящей реакции методом электронного баланса, укажите окислитель (ок-ль), восстановитель (в-ль), процессы окисления (ок-ние) и восстановления (в-ние).

Вывод._____

	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена	Студента	Студента		преподавателя
Работа защищена				

Лабораторная работа № __ ИССЛЕДОВАНИЕ ХИМИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ

Опыт 1. Взаимодействие металлов с солями других металлов в водном растворе.

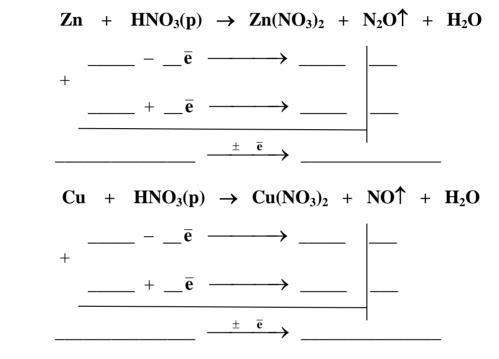
Поместите в пробирку железный гвоздь, предварительно очищенный от следов ржавчины, и прилейте водный раствор сульфата меди (II) объёмом 2–3 мл. Через 5–10 минут слейте раствор и рассмотрите поверхность гвоздя. Отметьте изменения. $\mathbf{Fe} + \mathbf{CuSO_4} \rightarrow \underline{\hspace{2cm}}$

Вывод._____

Опыт 2. Взаимодействие металлов с некоторыми кислотами различной концентрации.

В вытяжном шкафу налейте в две пробирки концентрированную азотную кислоту объёмом 1–2 мл в каждую. В одну из пробирок опустите гранулу цинка, в другую – обрезок медной проволоки. Что наблюдается?

Запишите уравнения реакций при взаимодействии цинка и меди с концентрированной азотной кислотой. Расставьте коэффициенты методом электронного баланса, укажите окислитель $(о\kappa - nb)$, восстановитель (в - nb), процессы окисления $(o\kappa - nue)$ и восстановления (s - nue).


Cu + HNO₃ (к) → ______ Наблюдения_____

Не выполняя практически, запишите уравнения реакций взаимодействия концентрированной серной кислоты с цинком и медью. Расставьте коэффициенты методом электронного баланса, укажите окислитель (ок-ль), восстановитель (в-ль), процессы окисления (ок-ние) и восстановления (в-ние).

Поместите в одну пробирку небольшой образец алюминия, в другую — образец меди. Добавьте в каждую пробирку разбавленную серную кислоту объёмом 1-2 мл. В какой пробирке идёт реакция? Запишите уравнение происходящий реакции, расставьте коэффициенты методом электронного баланса, укажите окислитель $(о\kappa-nb)$, восстановитель (b-nb), процессы окисления $(o\kappa-nue)$ и восстановления (b-nue).

$$Cu + H_2SO_4(p) \rightarrow$$

Не выполняя практически, запишите уравнения реакций взаимодействия разбавленной азотной кислоты с цинком и медью. Расставьте коэффициенты методом электронного баланса, укажите окислитель $(о\kappa-ль)$, восстановитель (в-ль), процессы окисления $(о\kappa-ниe)$ и восстановления (в-нue).

Вывоо	 	

Опыт 3. Взаимодействие алюминия с водным раствором щёлочи.

Поместите в две пробирки образцы алюминия и прилейте в одну из них воду, а в другую — водный раствор гидроксида натрия объёмом 1-2 мл. Что наблюдается в каждой пробирке? Запишите уравнения происходящих реакций. Расставьте коэффициенты в уравнениях окислительно—восстановительных реакций методом электронного баланса, укажите окислитель $(o\kappa-nb)$, восстановитель (b-nb), процессы окисления $(o\kappa-nue)$ и восстановления (b-nue).

Обратите внимание, что сначала происходит растворение защитной оксидной

	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена				
Работа защищена				

Лабораторная работа № ___

ИССЛЕДОВАНИЕ КОРРОЗИИ МЕТАЛЛОВ И СПЛАВОВ

Опыт 1. Влияние образования микрогальванических элементов на скорость окисления цинка в кислой среде.

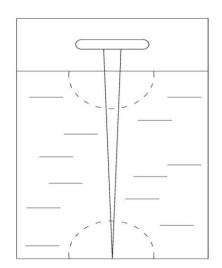
Налейте в две пробирки раствор уксусной кислоты объёмом 2–3 мл в каждую и опустите в них по одной грануле цинка. Затем в одну из пробирок добавьте немного раствора сульфата меди (II). Обратите внимание на изменение интенсивности выделения пузырьков водорода в этой пробирке.

Напишите уравнения реакций, протекающих в каждой пробирке, расставьте коэффициенты. Нарисуйте схему одного из микрогальванических элементов, возникающих в пробирке при добавлении раствора сульфата меди (II). Напишите уравнения анодной и катодной реакций. После окончания опыта промойте цинковые гранулы и положите их в фарфоровую чашку.

 $Zn + CH_3COOH \rightarrow$

В обеих пробирках происходит реакция:

во второй прос	оирке дополните.	льно происходит	реакция:
	Zn + CuSO) ₄ →	
Схема микрогалью	ванического элем	<u>іента</u>	
		анод	ē
		катод	+ē
вод			


Опыт 2. Коррозия железа при неравномерной аэрации в нейтральной среде (демонстрационный опыт).

Демонстрируется стаканчик с гелем, загущённым агар—агаром, в который наполовину погружён железный гвоздь. Гель содержит гексацианоферрат железа (III) $\mathbf{K_3[Fe(CN)_6]}$ — реактив на ион $\mathbf{Fe^{2+}}$. В гель добавили несколько капель фенолфталеина для обнаружения ионов $\mathbf{OH^-}$.

Анодные участки, где железо окисляется и переходит в состояние \mathbf{Fe}^{2+} , обнаруживаются по синему цвету образующегося комплекса:

$$3Fe^{2+} + 2[Fe(CN)_6]^{3-} \rightarrow Fe_3[Fe(CN)_6]_2$$
 турнбулева синь

Области, окрасившиеся в розовый цвет, соответствуют катодным участкам, где происходит восстановление кислорода (процесс кислородной деполяризации) с образованием ионов \mathbf{OH}^- , что обнаруживается по малиновой окраске фенолфталеина.

Отметьте увиденное на картинке, укажите расположение анодных и катодных участков, запишите уравнения электродных процессов.

анод	ē	
катод	+ē	

Вывод			_

Опыт 3. Моделирование коррозии железа в различных электролитах.

Налейте в три пробирки примерно на 1/4 объёма дистиллированной воды. Затем добавьте в **первую** пробирку щепотку поваренной соли NaCl, во **вторую** пробирку немного раствора серной кислоты, в **третью** – немного раствора гидрок-

сида натрия. Во все пробирки добавьте по 2 капли раствора $\mathbf{K}_3[\mathbf{Fe}(\mathbf{CN})_6]$. Перемешайте содержимое и аккуратно опустите в каждую пробирку по гвоздю, предварительно очищенному наждачной бумагой. Отметьте наблюдаемые изменения содержимого в пробирках. Заполните таблицу. О скорости коррозии железа можно судить по окраске раствора (чем больше ионов Fe^{2+} образуется в результате окисления железа, тем большей интенсивности будет синяя окраска раствора). Сравнительную скорость коррозии обозначьте цифрами от 1 до 3 (наименьшая скорость – 1, наибольшая – 3).

No	Ионы и молекулы, находящиеся в растворе	рН раствора	Окраска раствора	Сравнительная скорость коррозии
1	Na ⁺ , Cl ⁻ , H ₂ O, O ₂	7		
2	H ⁺ , SO ₄ ²⁻ , H ₂ O, O ₂	2		
3	Na ⁺ , OH ⁻ , H ₂ O, O ₂	12		

Составьте уравнения реакций на анодных и катодных участках при электрохимической коррозии железа, протекающей в каждой пробирке. *После опыта* гвозди промойте и сложите в фарфоровую чашку.

		Раствор 1
анод	<u>Fe</u>	$\underline{\hspace{1cm}}$ – $\underline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$
катод	Fe ₃ C	$\underline{\hspace{1cm}}$ + $\underline{\hspace{1cm}}$ \overline{e} \longrightarrow $\underline{\hspace{1cm}}$
		Раствор 2
анод	<u>Fe</u>	$\underline{\hspace{1cm}}$ – $\underline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$
катод	<u>Fe₃C</u>	+ē
		Раствор 3
анод	<u>Fe</u>	$\underline{\hspace{1cm}}$ – $\underline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$ $\overline{\hspace{1cm}}$
катод	<u>Fe₃C</u>	+ē

Вывод.			

Опыт 4. Коррозия лужёного и оцинкованного железа.

Налейте в две пробирки дистиллированную воду на 1/4 объёма, в каждую добавьте раствор уксусной кислоты объёмом 1–2 мл и по 2–3 капли раствора $K_3[Fe(CN)_6]$. В первую пробирку опустите обрезок белой жести (железо, покрытое слоем олова, – лужёное), в другую – обрезок оцинкованного железа. Наблюдайте, какие изменения произошли с образцами белой жести и оцинкованного железа. Отметьте окраску растворов. Использованные образцы металлов промойте и сложите в фарфоровую чашку. Составьте схемы микрогальванических элементов, учитывая, что процесс коррозии происходит в кислой среде. Напишите уравнения анодных и катодных реакций. Сравните коррозионную стойкость двух исследованных образцов.

Лужёное железо

Опинкованное железо

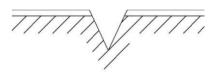

Схема гальванического элемента

Схема гальванического элемента

77777
11111/2////////////////////////////////
/ / /

анод___ - __ē → ____

катод___ + __ē → _____

анод___ - __ē → ____

катод___ + __ $\bar{e} \to ____$

Вывод.______

	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена				
Работа защищена				

Лабораторная работа № ___

ИССЛЕДОВАНИЕ СВОЙСТВ НЕОРГАНИЧЕСКИХ ВЯЖУЩИХ МАТЕРИАЛОВ

Опыт 1. Получение кристаллов двуводного гипса.

Налейте в пробирку специально приготовленный раствор серной кислоты объёмом 3—4 мл и прилейте к нему раствор хлорида кальция объёмом 1—2 мл.

Наблюдайте образование кристаллов малорастворимого двуводного сульфата кальция (двуводного гипса) $CaSO_4 \cdot 2H_2O$ по уравнению:

$$H_2SO_4 + CaCl_2 + 2H_2O \rightarrow CaSO_4 \cdot 2H_2O + 2HCl$$

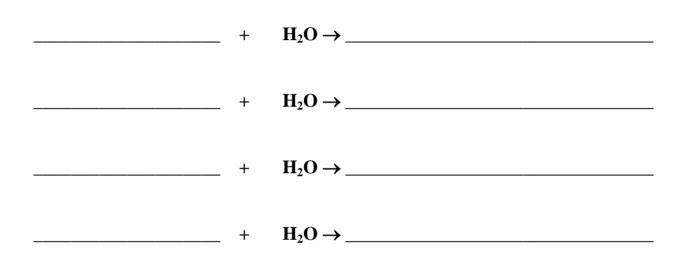
Вывод			

Опыт 2. Твердение строительного гипса.

На часовое стекло насыпьте немного порошка строительного гипса. Прилейте немного воды и перемешайте так, чтобы получилась тестообразная масса. Из теста скатайте шарик и оставьте его на стекле. Через некоторое время оцените прочность образовавшегося камня. Напишите уравнение реакции гидратации.

$$CaSO_4 \cdot 0.5H_2O + H_2O \rightarrow$$

Вывод	 		


Опыт 3. Получение водной вытяжки портландцемента и определение её ионного состава.

Насыпьте в пробирку немного порошка портландцемента (на 0,5 см от дна). Налейте дистиллированную воду почти до верха пробирки и энергично взболтайте до получения однородной суспензии. Содержимое пробирки отфильтруйте на воронке с бумажным фильтром. Прозрачный фильтрат разделите на две порции. К содержимому одной порции прилейте раствор карбоната натрия, к содержимому другой – каплю фенолфталеина.

В состав портландцемента входят четыре основных минерала:

трёхкальциевый силикат (алит)	3CaO·SiO ₂	(C_3S)
двухкальциевый силикат (белит)	$2CaO \cdot SiO_2$	(C_2S)
трёхкальциевый алюминат	$3CaO \cdot Al_2O_3$	(C_3A)
четырёхкальциевый алюмоферрит	$4CaO\cdot Al_2O_3\cdot Fe_2O_3$	(C_4AF)

При взаимодействии с водой каждого из минералов происходят реакции:

При взаимодействии алита с водой образуется сильное основание — гидроксид кальция, молекулы которого практически необратимо диссоциируют в водном растворе по уравнению:

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$$

Ионы ${\bf Ca}^{2+}$ можно обнаружить в фильтрате добавлением к нему водного раствора карбоната натрия.

$$Ca(OH)_2 + Na_2CO_3 \rightarrow$$

Ионы ОН	придают раствору щелочно	ой характер, фенолфталеи	н окрашива-
ется в	цвет.		
Вывод			

Опыт 4. Частичное растворение и разрушение портландцемента с помощью кислоты. (опыт выполняется в вытяжном шкафу).

Насыпьте в пробирку порошок портландцемента и прилейте на треть объёма пробирки раствор хлороводородной (соляной) кислоты. Через 3–5 минут содержимое пробирки отфильтруйте на воронке с бумажным фильтром. Фильтрат разделите на две части. К одной из них добавьте оксалат аммония ($\mathbf{NH_4}$)₂ $\mathbf{C_2O_4}$ (для обнаружения ионов кальция), к другой добавьте роданид калия **KSCN** (для обнаружения ионов железа \mathbf{Fe}^{3+}).

При взаимодействии с соляной кислотой каждого из минералов портландцемента происходят реакции:

+ HCl →

Растворимые продукты разрушения цемента в водном растворе находятся в виде ионов:

Ионы кальция \mathbf{Ca}^{2+} , перешедшие в раствор, можно обнаружить оксалатом аммония $(\mathbf{NH_4})_2\mathbf{C_2O_4}$. При этом ионы $\mathbf{C_2O_4}^{2-}$ связывают ионы \mathbf{Ca}^{2+} в нерастворимый в воде оксалат кальция:

$$Ca^{2+} + C_2O_4^{2-} \rightarrow CaC_2O_4$$

Молекулярное уравнение:

$$CaCl_2 + (NH_4)_2C_2O_4 \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

Ионы железа $\mathbf{Fe^{3+}}$, перешедшие в раствор, можно обнаружить роданидом калия **KSCN**. При этом ионы $\mathbf{SCN^-}$ реагируют с ионами $\mathbf{Fe^{3+}}$ с образованием роданида железа (III), имеющего характерную кроваво-красную окраску.

$$Fe^{3+} + SCN^{-} \rightarrow Fe(SCN)_{3}$$

Молекулярное уравнение:

$$FeCl_3 + \underline{KSCN} \rightarrow \underline{\qquad} + \underline{\qquad}$$

Вывод	 	 	

	Фамилия И.О. студента	Подпись студента	Дата	Подпись преподавателя
Работа выполнена	orj goniu			npenoguzuren:
Работа защищена				

Лабораторная работа № __ ПОЛУЧЕНИЕ ПОЛИМЕРОВ МЕТОДАМИ ЦЕПНОЙ И СТУПЕНЧАТОЙ ПОЛИМЕРИЗАЦИИ

Опыт 1. Полимеризация в блоке.

Поместите жидкий стирол объёмом примерно 5 мл в чистую пробирку, добавьте две гранулы перекиси бензоила, перемешайте. Нагревайте содержимое на водяной бане 15 – 20 минут. Наблюдайте постепенное загустевание и отверждение содержимого пробирки.

При нагревании перекись бензоила разлагается на свободные радикалы:

$$C_6H_5COO-OOCC_6H_5 \xrightarrow{T} 2C_6H_5COO \bullet$$

$$C_6H_5COO \bullet \xrightarrow{T} C_6H_5 \bullet + CO_2$$

Обозначим условно радикал C_6H_5 • символом R •

Механизм радикальной полимеризации –

- стадия инициирования цепи

стадия роста цепи

→____

⁻ стадия обрыва цепи

		+	 →
→			
Вывод	 		

Опыт 2. Получение полиамида на границе раздела двух фаз.

Налейте в пробирку водный раствор гексаметилендиамина (1–2 мл), содержащий карбонат натрия для удаления выделяющегося хлороводорода. Затем осторожно по стенке, чтобы не перемешивалось, прилить раствор хлорангидрида адипиновой кислоты в бензоле. На границе раздела двух несмешивающихся жидкостей сразу образуется плёнка полимера, которую надо поддеть стеклянной палочкой и вытягивать из пробирки с такой скоростью, чтобы образовалась по возможности ровная по толщине нить или плёнка. Образовавшийся полимер промойте несколько раз водой и просушите на воздухе. Напишите уравнение реакции образования полиамида.

	 	•••
Вывод		

	Фамилия И.О.	Подпись	Дата	Подпись
	студента	студента	дата	преподавателя
Работа выполнена				
Работа защищена				

Названия распространённых кислот и кислотных остатков

Кислота	Название кислоты	Кислотный остаток	Название кислотного остатка
HAlO ₂	Метаалюминиевая	${ m AlO_2}^-$	Метаалюминат
H ₃ AlO ₃	Ортоалюминиевая	AlO ₃ ³⁻	Ортоалюминат
H ₃ BO ₃	Ортоборная (борная)	BO ₃ ³⁻	Ортоборат
H ₂ B ₄ O ₇	Четырёхборная	B ₄ O ₇ ²⁻	Тетраборат
НСООН	Муравьиная	HCOO-	Формиат
CH ₃ COOH	Уксусная	CH ₃ COO	Ацетат
HCN	Циановодородная	CN ⁻	Цианид
H ₂ CO ₃	Угольная	CO ₃ ²⁻	Карбонат
H ₂ C ₂ O ₄	Щавелевая	$C_2O_4^{2-}$	Оксалат
HF	Фтороводородная (плавиковая)	\mathbf{F}^{-}	Фторид
HC1	Хлороводородная (соляная)	C1 ⁻	Хлорид
НВг	Бромоводородная	Вг⁻	Бромид
НІ	Йодоводородная	I_	Иодид
HC10	Хлорноватистая	C10 ⁻	Гипохлорит
HClO ₂	Хлористая	ClO ₂	Хлорит
HClO ₃	Хлорноватая	ClO ₃	Хлорат
HC1O ₄	Хлорная	C1O ₄	Перхлорат
НСгО2	Метахромистая	CrO_2^-	Метахромит
H ₂ CrO ₄	Хромовая	CrO ₄ ²⁻	Хромат
H ₂ Cr ₂ O ₇	Двухромовая	$\operatorname{Cr_2O_7}^{2-}$	Дихромат
HMnO ₄	Марганцовая	MnO ₄	Перманганат
H ₂ MnO ₄	Марганцовистая	MnO ₄ ²⁻	Манганат
HNO ₂	Азотистая	NO_2^-	Нитрит
HNO ₃	Азотная	NO ₃	Нитрат
HPO ₃	Метафосфорная	PO ₃	Метафосфат
$H_4P_2O_7$	Пирофосфорная	P ₂ O ₇ ⁴⁻	Пирофосфат
H ₃ PO ₄	Ортофосфорная (фосфорная)	PO ₄ ³⁻	Ортофосфат (фосфат)
H ₂ S	Сероводородная	S ²⁻	Сульфид
HSCN	Родановодородная	SCN ⁻	Роданид
H ₂ SO ₃	Сернистая	SO ₃ ²⁻	Сульфит
H ₂ SO ₄	Серная	SO ₄ ²⁻	Сульфат
H ₂ S ₂ O ₃	Тиосерная	S ₂ O ₃ ²⁻	Тиосульфат
H ₂ SiO ₃	Кремниевая	SiO ₃ ²⁻	Силикат
	ı	1	

РАСТВОРИМОСТЬ СОЛЕЙ И ГИДРОКСИДОВ В ВОДЕ

(при комнатной температуре)

ОМНАТНОН Sr ²⁺ Al ³⁺ М Н М Р Р Р Р Р	Натнои теми КАТІ Н А13+ Сг3+	Натнои температ КАТИОНЬ Тедна Н Н Р Р Р Р Р Р Р Р Р Р Р	ТАТИ А13+ Сг ³⁺ Н Н Р Р Р Р Р		H H H P P P P P P	P P P P
A13+PP PP PP	КАТІ КАТІ Н Н Н Р Р Р	КАТИОНЬ КАТИОНЬ КАТИОНЬ КАТИОНЬ Р Н Н Р Н Н Р Р Р Р	KATИОНЫ Fe ³⁺ Fe ³⁺ Fe ³⁺ Fe ³⁺ Fe ³⁺ H H H H H H H H H		H H H P P P	H H H P P P
	KATI Cr³+ H P P	Температ КАТИОНЬ Сг³+ Fе²+ Н Н Н Н Р Р Р Р	TEMIREPATYPE KATHOHLI Cr ³⁺ Fe ²⁺ Fe ³⁺ H H H H H H P P P P P P		H H H P P P P P P	H H H P P P P P
P P P P P P P P P P P P P P P P P P P	P P P P P P P P P	Ni ²⁺ Co ²⁺ Mn ²⁺ H H H P P M P P P	Мп ²⁺ Н И Р	Мп ²⁺ Н И Р		
 Ni²⁺ Co²⁺ Mn²⁺ H H H P P M P P P P P P P P P 	H Ni ²⁺ Co ²⁺ Mn ²⁺ Zn ²⁺ H H H H P P M P P P P P P P P P P P P P	Ni ²⁺ Co ²⁺ Mn ²⁺ Zn ²⁺ H H H H P P M P P P P P P P P P P P P P	Mn ²⁺ Zn ²⁺ H H M P P P	Mn ²⁺ Zn ²⁺ H H M P P P	Zn ²⁺ H P P	
H Ni ²⁺ Co ²⁺ Mn ²⁺ Zn ²⁺ Ag ⁺ H H H H — P P M P P P P P P H P P P P H H P P P H	H Ni ²⁺ Co ²⁺ Mn ²⁺ Zn ²⁺ Ag ⁺ H H H H — P P M P P P P P P H P P P P H H P P P H	Ni ²⁺ Co ²⁺ Mn ²⁺ Zn ²⁺ Ag ⁺ H H H H — P P M P P P P P P H P P P P H H P P P H	Mn ²⁺ Zn ²⁺ Ag ⁺ H H — M P P P P H P P H	Mn ²⁺ Zn ²⁺ Ag ⁺ H H — M P P P P H P P H	Zn ²⁺ Ag ⁺ H — P P P H P H	А _g + Н Н Н
H H H H H H H H H	H Ni ²⁺ Co ²⁺ Mn ²⁺ Zn ²⁺ Ag ⁺ Hg ²⁺ H H H H — — P P M P P M P P P P H P P P P P H M P P P P H M	Nî²+ Co²+ Mn²+ Zn²+ Ag+ Hg²+ H H H H — — P P M P P M P P P P M P P P P P H M P P P P H M	Mn ²⁺ Zn ²⁺ Ag ⁺ Hg ²⁺ H H — — — M P P M P P H P P H M	Mu ²⁺ Zn ²⁺ Ag ⁺ Hg ²⁺ H H — — — M P P M P P H P	Zn ²⁺ Ag ⁺ Hg ²⁺ H — — P P M P H P P H M	Ag ⁺ Hg ²⁺ — — — — M H P M H M
Ni ²⁺ Co ²⁺ Mni ²⁺ Zni ²⁺ Ag ⁺ Hgi ²⁺ H	Ni²+ Co²+ Mm²+ Zn²+ Ag+ Hg²+ Pb²+ H H H H — — H P P M P P M H P P P P H P M P P P P H M M P P P P H H H	Nî²+ Co²+ Mn²+ Zn²+ Ag+ Hg²+ Pb²+ H H H H — — H P P M P P M H P P P P H P M P P P P H M M P P P P H H H	Mn ²⁺ Zn ²⁺ Ag ⁺ Hg ²⁺ Pb ²⁺ H H — — H M P P M H P P H M M P P H M M	Mn²+ Zn²+ Ag+ Hg²+ Pb²+ H H — — H M P P M H P P H P M P P H M M P P H H H H H H H H	Zn²+ Ag⁺ Hg²+ Pb²+ H — — H P P M H P H P M P H M M H H H H	Ag* Hg²* Pb²* — — H P M H H P M H M M H H H

"P" - растворяется (>1 г на 100 г H₂O), "М" - мало растворяется (от 0,1 г до 1 г на 100 г H₂O), "—" - разлагается в водной среде, "H" - не растворяется (<0,1 г на 100 г H₂O), "?" – нет достоверных сведений о существовании соединения.

18(VIIIA) 4.0 He	Гетий 0 Ne	Неон 18 39.9 Аг	Аргон 56 83.8 КГ Криптон	4 131.3 Xe	Ксенон (222) Rn	Радон 118	
— [4	_	w	35 79.9 36 Br I	6	йод К 85 (210) 86 At	Acrar 117 1	
	13 (IIIA) 14 (IVA) 15 (VA) 16 (VIA) 17 (VIIA) 10.8 6 12.0 7 14.0 8 16.0 9 19.0 B C N O F	Кислород 16 32.1	Se Cevien	52 127.6 Te	Terrip 84 (209) PO	Полоний	71 175.0
8	15 (VA) 7 14.0	A30T	32 72.6 33 74.9 Ge AS	Sl 121.8 Sb	Сурьма 83 209.0 Ві	Висмут 115	69 168.9 70 173.0 71 175.0 ТМ ХВ LU ТУ-ий Иттербий Лютеций 101 (258) 103 (262) МС
ДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ кений металлов (E ⁰ , Bold t)	14 (IVA) 8 12.0 C	Углерод 14 28.1 Si		20	Олово 4 82 207.2 Рb	Свинец 114	69 168.9 Ттт Тулий Тулий (101 (258)) ММ
EME	5 10.8 B	Bop 13 27.0 AI	31 69.7 Ga Ганлий	4	Индий 81 204.4 П	Таллий 113	68 167.3 Er 9p6nii 100 (257) Fm
ILE A	Cd Cd Cd Cd Cd Cd Cd		10	4	Серебро Кадмий 79 197.0 80 200.6 Au НQ	P.3	66 162.5 67 164.9 Dy НО Лиспрозий Гольмий 98 (251) 99 (252) Cf ES
LEM,	$egin{array}{cccccccccccccccccccccccccccccccccccc$		58.7 Cu	4		на 3олото 1) 11 (280) 1 Rg	
CUCTE	$egin{array}{lll} Mn & Cr & \ -1,18 & -0,91 \ Mn^{2+} & Cr^{2+} \end{array}$	$egin{array}{cccc} Hg & Pt & & & & & & & & & & & & & & & & & $	28 Z H	4	у ций Палиадий 192.2 ⁷⁸ 195.1 ГР Рt	Придий Платина 109 276) 110 (281) Мф В В В В В В В В В В В В В В В В В В В	
AA ($T_{-1,63}^{ar{ extit{r}}}$	Ag Hg 0,80 0,85 Ag⁺ Hg ²⁺	55.8 27 58.9 (C)	-	P ₀		
IECK Metali	$\begin{array}{ccc} \textbf{\textit{Be}} & \textbf{\textit{AI}} \\ -1.85 & -1.66 \\ \textbf{\textit{Be}}^{2+} & \textbf{\textit{AI}}^{3+} \end{array}$	$egin{array}{ccc} H & C oldsymbol{u} & 0 & 0.34 \ H^+ & \mathrm{C} oldsymbol{u}^2 & \end{array}$	¥e _s ₹	4 1			150.4 63 152.0 нарий Европий Америций Тоний Америций
ДИИЧ жений	$M_{oldsymbol{g}}^{oldsymbol{Mg}}$	2 7 2	0	\$ H	Молибден Технеций 74 183.9 75 186.2 W Re	F 10 20 20 20 20 20 20 20 20 20 20 20 20 20	61 (145) 62 150.4 63 152.0 Прометий Самарий Европий 93 (237) 94 (244) 95 (243) Нептуний Плутоний Америций Америций
ПЕРИОДИЧЕСКАЯ	Ba Sr Ca Na 2,91 -2,89 -2,87 -2,71 Ba ²⁺ Sr ²⁺ Ca ²⁺ Na ⁺	i Sn 25 -0,14 2+ Sn ²⁺		ξ <u>Σ</u>		Boun.	
Pan	Ba Sr Ca -2,91 -2,89 -2,87 Ba ²⁺ Sr ²⁺ Ca ²	$egin{array}{cccc} Co & Ni & & & & & & & & & & & & & & & & & $	48.0 23 50.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72	77 138.9 72 178.5 73 180.9 La Hf Та	Tan Tan	00 H H H
	K $-2,92$ \mathbf{K}^{+}		C Ti	4	138.9 72 138.9 H	Lade Total	Te Lipers In the care of the c
	9.0 <i>Li</i> Be Li ⁺		40.1 21 45.0 SC SC IBM SKILLINI	689	4.4	Jan 89	
(IA)	Водород 2 (П) 3 (С.) 4 (C.) 4		9 39.1 Ca 40.1 Калып Калып Калып Калып	× 01	Рубидий Стронций 55 132.9 56 137.3 СS Ва	Цезий Барий 87 22.0 1223 8 22.0 Fr Ra Франций Разий	
Пери-Группы оды 1 (ДА) 1 (ДА)	2 3 Boy	e e	4	5	9 Py6 SS	787 7 T	Лант